>> ASTRONOMIA
>> ASTRONOMIA

 

Astronomia, que etimologicamente significa "lei das estrelas" com origem grego: (άστρο + νόμος)povos que acreditavam existir um ensinamento vindo das estrelas, é hoje uma ciência que se abre num leque de categorias complementares aos interesses da física, da matemática e da biologia. Envolve diversas observações procurando respostas aos fenômenos físicos que ocorrem dentro e fora da Terra bem como em sua atmosfera e estuda as origens, evolução e propriedades físicas e químicas de todos os objectos que podem ser observados no céu (e estão além da Terra), bem como todos os processos que os envolvem. Observações astronômicas não são relevantes apenas para a astronomia, mas também fornecem informações essenciais para a verificação de teorias fundamentais da física, tais como a teoria da relatividade geral.

A origem da astronomia se baseia na antiga ciência, hoje considerada pseudociência astrologia, praticada desde tempos remotos. Todos os povos desenvolveram, ao observar o céu, um ou outro tipo de calendário, para medir a posição dos astros em função das variações do clima no decorrer doano. A função primordial destes calendários era prever eventos cíclicos dos quais dependia a sobrevivência humana, como a chegada das chuvas ou dofrio. Esse conhecimento empírico foi a base de classificações variadas dos corpos celestes. As primeiras idéias de constelação surgiram da necessidade de memorizar o cenário de fundo e assim acompanhar o movimento dos planetas atravessarem esse quadro de referência fixo.

A Astronomia é uma das poucas ciências onde observadores independentes possuem um papel ativo, especialmente na descoberta e monitoração defenômenos temporários. Muito embora seja a sua origem, a astronomia não deve ser confundida com Astrologia, o segmento de um estudo teórico que associava os fenômenos celestes com as coisas na terra (marés) , mas que apresenta falho ao generalizar o comportamento e o destino da humanidade com as estrelas e planetas. Embora os dois casos compartilhem uma origem comum, seus segmentos hoje são bastante diferentes; a astronomia incorpora o método científico e associa observações científicas extraterrestres para confirmar algumas teorias terrenas (o hélio foi descoberto assim), enquanto a única base científica da astrologia foi correlacionar a posição dos principais astros da abóboda celeste (como o Sol e aLua) com alguns fenômenos terrestres, como o movimento das marés, o clima ou a alternância de estações.

 

 

Na parte inicial da sua história, a astronomia envolveu somente a observação e a previsão dos movimentos dos objetos no céu que podiam ser vistos a olho nu. O Rigveda refere-se aos 27 asterismosou nakshatras associados aos movimentos do Sol e também às 12 divisões zodiacais do céu. Os antigos gregos fizeram importantes contribuições para a astronomia, entre elas a definição demagnitude aparente. A Bíblia contém um número de afirmações sobre a posição da Terra no universo e sobre a natureza das estrelas e dos planetas, a maioria das quais são poéticas e não devem ser interpretadas literalmente; ver Cosmologia Bíblica. Nos anos 500Aryabhata apresentou um sistema matemático que considerava que a Terra rodava em torno do seu eixo e que os planetas se deslocavam em relação ao Sol.

Astronomia estelar, evolução estelar: A nebulosa planetária de Formiga. A ejecção de gásda estrela moribunda no centro tem padrões simétricos intrigantes diferentes dos padrões caóticos esperados de uma explosão ordinária. Cientistas usando o Hubble tentam entender como uma estrela esférica pode produzir tais simetrias proeminentes no gás que ejecta.

O estudo da astronomia quase parou durante a Idade Média, à exceção do trabalho dos astrónomos árabes. No final do século IX, o astrónomo árabe al-Farghani (Abu'l-Abbas Ahmad ibn Muhammad ibn Kathir al-Farghani) escreveu extensivamente sobre o movimento dos corpos celestes. No século XII, os seus trabalhos foram traduzidos para o latim, e diz-se que Dante aprendeu astronomia pelos livros de al-Farghani.

No final do Século X, um observatório enorme foi construído perto de TeerãIrã, pelo astrônomo al-Khujandi, que observou uma série de trânsitos meridianos do Sol, que permitiu-lhe calcular a obliquidade da eclíptica, também conhecida como a inclinação do eixo da Terra relativamente ao Sol. Como sabe-se hoje, a inclinação da Terra é de aproximadamente 23°34', e al-Khujandi mediu-a como sendo 23°32'19". Usando esta informação, compilou também uma lista das latitudes e das longitudes de cidades principais.

Omar Khayyam (Ghiyath al-Din Abu'l-Fath Umar ibn Ibrahim al-Nisaburi al-Khayyami) foi um grande cientista, filósofo e poeta persa que viveu de 1048 a1131. Compilou muitas tabelas astronômicas e executou uma reforma do calendário que era mais exato do que o Calendário Juliano e se aproximava doCalendário Gregoriano. Um feito surpreendente era seu cálculo do ano como tendo 365,24219858156 dias, valor esse considerando a exatidão até a sexta casa decimal se comparado com os números de hoje, indica que nesses 1000 anos pode ter havido algumas alterações na órbita terrestre.

Durante o RenascimentoCopérnico propôs um modelo heliocêntrico do Sistema Solar. No século XIII, o imperador Hulagu, neto de Gengis Khan e um protetor das ciências, havia concedido ao conselheiro Nasir El Din Tusi autorização para edificar um observatório considerado sem equivalentes na época. Entre os trabalhos desenvolvidos no observatório de Maragheg e a obra "De Revolutionibus Orbium Caelestium" de Copérnico, há algumas semelhanças que levam os historiadores a admitir que este teria tomado conhecimento dos estudos de Tusi, através de cópias de trabalhos deste existentes no Vaticano.

modelo heliocêntrico do Sistema Solar foi defendido, desenvolvido e corrigido por Galileu Galilei e Johannes Kepler. Kepler foi o primeiro a desenvolver um sistema que descrevesse corretamente os detalhes do movimento dos planetas com o Sol no centro. No entanto, Kepler não compreendeu os princípios por detrás das leis que descobriu. Estes princípios foram descobertos mais tarde porIsaac Newton, que mostrou que o movimento dos planetas se podia explicar pela Lei da gravitação universal e pelas leis da dinâmica.

Constatou-se que as estrelas são objetos muito distantes. Com o advento da Espectroscopia provou-se que são similares ao nosso próprio Sol, mas com uma grande variedade de temperaturas,massas e tamanhos. A existência de nossa galáxia, a Via Láctea, como um grupo separado das estrelas foi provada somente no século XX, bem como a existência de galáxias "externas", e logo depois, a expansão do universo dada a recessão da maioria das galáxias de nós. A Cosmologia fez avanços enormes durante o século XX, com o modelo do Big Bang fortemente apoiado pelas evidências fornecidas pela Astronomia e pela Física, tais como a radiação cósmica de micro-ondas de fundo, a Lei de Hubble e a abundância cosmológica dos elementos.  

 

Campos

Por ter um objeto de estudo tão vasto, a astronomia é dividida em muitas áreas. Uma distinção principal é entre a astronomia teórica e a observacionalObservadores usam vários meios para obter dados sobre diversos fenômenos, que são usados pelos teóricos para criar e testar teorias e modelos, para explicar observações e para prever novos resultados. O observador e o teórico não são necessariamente pessoas diferentes e, em vez de dois campos perfeitamente delimitados, há um contínuo de cientistas que põem maior ou menor ênfase na observação ou na teoria.

Os campos de estudo podem também ser categorizados quanto:

Enquanto a primeira divisão se aplica tanto a observadores como também a teóricos, a segunda se aplica a observadores, pois os teóricos tentam usar toda informação disponível, em todos os comprimentos de onda, e observadores frequentemente observam em mais de uma faixa do espectro.

[editar]Astronomia observacional

Astronomia extragaláctica: lente gravitacional

. Esta imagem captada pelo Telescópio Hubble mostra vários objectos azuis em forma de espiral que na verdade são imagens múltiplas da mesma galáxia. A imagem original da galáxia foi duplicada pelo efeito de lente gravitacional causado pelos clusters de galáxias elípticas e em espiral de cor amarela que aparecem no centro da fotografia. A lente gravitacional deve-se ao poderoso campo gravítico que o cluster cria e que curva, distorce e amplifica a luz de objectos mais distantes.

Na astronomia, a principal forma de obter informação é através da detecção e análise da luz visível ou outras regiões da radiação eletromagnética. Mas a informação é adquirida também por raios cósmicosneutrinos, e, no futuro próximo, ondas gravitacionais (veja LIGO e LISA).

Uma divisão tradicional da astronomia é dada pela faixa do espectro eletromagnético observado. Algumas partes do espectro podem ser observadas da superfície da Terra, enquanto outras partes só são observáveis de grandes altitudes ou no espaço

 

Radioastronomia

radioastronomia estuda a radiação com comprimento de onda maior que aproximadamente 1 milímetro.[1] A radioastronomia é diferente da maioria das outras formas de astronomia observacional pelo fato de as ondas de rádio observáveis poderem ser tratadas como ondas ao invés de fótons discretos. Com isso, é relativamente mais fácil de medir a amplitude e a fase (onda)|fase das ondas de rádio.[1]

Apesar de algumas ondas de rádio serem produzidas por objetos astronômicos na forma de radiação térmica, a maior parte das emissões de rádio que são observadas da Terra são vistas na forma de radiação síncrotron, que é produzida quando elétrons ou outras partículas eletricamente carregadas descrevem uma trajetória curva em um campo magnético.[1] Adicionalmente, diversas linhas espectrais produzidas por gás interestelar, notadamente a linha espectral do hidrogênio de 21 cm, são observáveis no comprimento de onda de rádio.[1][2]

Uma grande variedade de objetos são observáveis no comprimento de onda de rádio, incluindo supernovasgás interestelarpulsares e núcleos de galáxias ativas.  

Astronomia infravermelha

astronomia infravermelha liga com a detecção e análise da radiação infravermelha (comprimentos de onda maiores que a luz vermelha). Exceto por comprimentos de onda mais próximas à luz visível, a radiação infravermelha é na maior parte absorvida pela atmosfera, e a atmosfera produz emissão infravermelha numa quantidade significante. Consequentemente, observatórios de infravermelho precisam estar localizados em lugares altos e secos, ou no espaço.

O espectro infravermelho é útil para estudar objetos que são muito frios para emitir luz visível, como os planetas e discos circunstrelares. Comprimentos de onda infravermelha maior podem também penetrar nuvens de poeira que bloqueiam a luz visível, permitindo a observação de estrelas jovens em nuvens moleculares e o centro de galáxias.[3] Algumas moléculas radiam fortemente no infravermelho, e isso pode ser usado para estudar a química no espaço, assim como detectar água em cometas.[4]

[editar]Astronomia óptica

Historicamente, a astronomia óptica (também chamada de astronomia da luz visível) é a forma mais antiga da astronomia.[5] Imagens ópticas eram originalmente desenhadas à mão. No final doséculo XIX e na maior parte do século XX as imagens eram criadas usando equipamentos fotográficos. Imagens modernas são criadas usando detectores digitais, principalmente detectores usandodispositivos de cargas acoplados (CCDs). Apesar da luz visível estender de aproximadamente 4000 Å até 7000 Å (400 nm até 700 nm),[5] o mesmo equipamento usado nesse comprimento de onda é também usado para observar radição de luz visível próxima a ultravioleta e infravermelho.

[editar]Astronomia ultravioleta

astronomia ultravioleta é normalmente usada para se referir a observações no comprimento de onda ultravioleta, aproximadamente entre 100 e 3200 Å (10 e 320 nm).[1] A luz nesse comprimento de onda é absorvida pela atmosfera da Terra, então as observações devem ser feitas na atmosfera superior ou no espaço.

A astronomia ultravioleta é mais utilizada para o estudo da radiação térmica e linhas de emissão espectral de estrelas azul quente (Estrela OB) que são muito brilhantes nessa banda de onda. Isso inclui estrelas azuis em outras galáxias, que têm sido alvos de várias pesquisas nesta área. Outros objetos normalmente observados incluem a nebulosa planetáriaremanescente de supernova, e núcleos de galáxias ativas.[1] Entretanto, a luz ultravioleta é facilmente absorvida pela poeira interestelar, e as medições da luz ultravioleta desses objetos precisam ser corrigidas.[  

Astronomia de raios-X

astronomia de raio-X é o estudo de objetos astronômicos no comprimento de onda de raio-X. Normalmente os objetos emitem radiação de raio-X como radiação de síncrotron (produzida pela oscilação de elétrons em volta de campos magnéticos), emissão termal de gases finos (chamada de radiação Bremsstrahlung) maiores que 107 kelvin, e emissão termal de gases grossos (chamadaradiação de corpo negro) maiores que 107 kelvin.[1] Como os raio-X são absorvidos pela atmosfera terrestre todas as observações devem ser feitas de balões de grande altitude, foguetes, ou naves espaciais.

Fontes de raio-X notáveis incluem binário de raio Xpulsares, remanescentes de supernovas, galáxias elípticasaglomerados de galáxias e núcleos galácticos ativos.[1]

[editar]Astronomia de raios gama

astronomia de raios gama é o estudo de objetos astronômicos que usam os menores comprimentos de onda do espectro eletromagnético. Os raios gama podem ser observados diretamente por satélites como o observatório de raios Gama Compton ou por telescópios especializados chamados Cherenkov.[1] Os telescópios Cherenkov não detectam os raios gama diretamente mas detectam flasses de luz visível produzidos quando os raios gama são absorvidos pela atmosfera da Terra.[6]

A maioria das fontes emissoras de raio gama são na verdade Erupções de raios gama, objetos que produzem radiação gama apenas por poucos milisegundos a até milhares de segundos antes de desaparecerem. Apenas 10% das fontes de raio gama são fontes não-transendentes, incluindo pulsaresestrelas de nêutrons, e candidatos a buracos negros como núcleos galácticos ativos.[1]

[editar]Campos não baseados no espectro eletromagnético

Além da radiação eletromagnética outras coisas podem ser observadas da Terra que se originam de grandes distâncias.

Na Astronomia de neutrinos, astrônomos usam laboratórios especiais subterrâneos como o SAGEGALLEX e Kamioka II/III para detectar neutrinos. Esses neutrinos se originam principalmente doSol, mas também de supernovas.[1]

Raios cósmicos consistindo de partículas de energia muito elevada podem ser observadas chocando-se com a atmosfera da terra.[carece de fontes] Além disso, no futuro detectores de neutrino poderão ser sensíveis aos neutrinos produzidos quando raios cósmicos atingem a atmosfera da Terra.

 

Astrometria e mecânica celestial

Um dos campos mais antigos da astronomia e de todas as ciências, é a medição da posição dos objetos celestiais. Historicamente, o conhecimento preciso da posição do Sol, Lua, planetas e estrelas era essencial para a navegação celestial.

A cuidadosa medição da posição dos planetas levou a um sólido entendimento das perturbações gravitacionais, e a capacidade de determinar as posições passadas e futuras dos planetas com uma grande precisão, um campo conhecido como mecânica celestial. Mais recentemente, o monitoramento de Objectos Próximos da Terra vai permitir a predição de encontros próximos, e possivelmente colisões, com a Terra.[8]

A medição do paralaxe estelar de estrelas próximas provêm uma linha de base fundamental para a medição de distâncias na astronomia que é usada para medir a escala do universo. Medições paralaxe de estrelas próximas provêm uma linha de base absoluta para as propriedades de estrelas mais distantes, porque suas propriedades podem ser comparadas. A medição da velocidade radia e o movimento próprio mostra a cinemática desses sistemas através da Via Láctea. Resultados astronômicos também são usados para medir a distribuição de matéria escura na galáxia.[9]

Durante a década de 1990, as técnicas de astrometria para medir as stellar wobble foram usados para detectar planetas extrasolares orbitando a estrelas próximas.[10]

[editar]Subcampos específicos

Astronomia planetária ou ciências planetárias: um "dust devil" (literalmente, demônio da poeira) marciano. A fotografia foi captada pela NASA Global Surveyor em órbita à volta de Marte. A faixa escura e longa é formada pelos movimentos em espiral da atmosfera marciana (um fenómeno semelhante ao tornado). O "dust devil" (o ponto preto) está a subir a encosta da cratera. Os "dust devils" formam-se quando a atmosfera é aquecida por uma superfície quente e começa a rodar ao mesmo tempo que sobe. As linhas no lado direito da figura são dunas de areia no leito da cratera.

[editar]Astronomia solar

A uma distância de oito minutos-luz, a estrela mais frequentemente estudada é o Sol, uma típica estrela anã da sequência principal da classe estrelar G2 V, com idade de aproximadamente 4,6 Gyr. O Sol não é considerado uma estrela variável, mas passa por mudanças periódicas em atividades conhecidas como ciclo solar. Isso é uma flutuação de 11 anos nos números de mancha solares. Manchas solares são regiões de temperatura abaixo da média  que estão associadas a uma intensa atividade magnética.[11]

O Sol tem aumentado constantemente de luminosidade no seu curso de vida, aumentando em 40% desde que se

 

tornou uma estrela dasequência principal. O Sol também passa por mudanças periódicas de luminosidade que podem ter um impacto significativo na Terra.  

 

 

Astronomia estelar

  • Astronomia estelar: Estudo das estrelas, em geral.
  • Formação de estrelas: Estudo das condições e dos processos que conduziram à formação das estrelas no interior de nuvens do gás, e o próprio processo da formação.
  • Evolução estelar: Estudo da evolução das estrelas, de sua formação a seu fim como um remanescente estelar.
  • Formação estelar: Estudo das condições e processos que levam à formação de estrelas no interior de nuvens de gás.

[editar]Astronomia galáctica

Estrutura dos braços espirais da Via Láctea.
  • Astronomia galáctica: Estudo da estrutura e componentes de nossa galáxia, seja através de dados relativos a objetos de nossa galáxia, seja através do estudo de galáxias próximas, que podem ser observadas em detalhe e que podem ser usadas para comparação com a nossa.
  • Formação e evolução de galáxias: Estudo da formação das galáxias e sua evolução ao estado atual observado.

[editar]Astronomia extragaláctica

 

Por exemplo, se acredita que o mínimo de Maunder tenha causado a Pequena Idade do Gelo.[13]

A superfície externa visível do Sol é chamada fotosfera. Acima dessa camada há uma fina região conhecida como cromosfera. Essa é envolvida por uma região de transição de temperaturas cada vez mais elevadas, e então pela super-quente corona.

No centro do Sol está a região do núcleo, um volume com temperatura e pressão suficientes para uma fusão nuclear ocorrer. Acima do núcleo está a zona de radiação, onde o plasma se converte o fluxo de energia através da radiação. As camadas externas formam uma zona de convecção onde o gás material transporta a energia através do deslocamento físico do gás. Se acredita que essa zona de convecção cria a atividade magnética que gera as manchas solares.[11]

Um vento solar de partículas de plasma corre constantemente para fora do Sol até que atinge a heliosfera. Esse vento solar interage com amagnetosfera da Terra para criar os cinturões de Van Allen, assim como a aurora onde as linhas dos campos magnéticos da Terra descendem até a atmosfera da Terra.[14]

[editar]Ciência planetária

arqueológicos e do conhecimento astronômico de povos extintos.

Cosmologia

[editar]Astronomia teórica

Tópicos estudados pelos astrônomos teóricos são: dinâmica e evolução estelarformação e evolução de galáxiasestrutura em grande escala da matéria no Universo; origem dos raios cósmicos;relatividade geral e cosmologia física, incluindo Cosmologia das cordas e física de astropartículas.

[editar]Campos interdisciplinares

A astronomia e astrofísica desenvolveram links significantes de interdisciplinaridade com outros grandes campos científicosArqueoastronomia é o estudo das antigas e tradicionais astronomias em seus contextos culturais, utilizando evidências arqueológicas e antropológicasAstrobiologia é o estudo do advento e evolução os sistemas biológicos no universo, com ênfase particular na possibilidade de vida fora do planeta Terra.

O estudo da química encontrada no espaço, incluindo sua formação, interação e destruição, é chamada de Astroquímica. Essas substâncias são normalmente encontradas em nuvens moleculares, apesar de também terem aparecido em estrelas de baixa temperatura, anões marrons, e planetas. Cosmoquímica é o estudo de compostos químicos encontrados dentro do Sistema Solar, incluindo a origem dos elementos e as variações na proporção de isótopos. Esses dois campos representam a união de disciplinas de astronomia e química.

 

Ferramentas astronômicas

[editar]Dia do astrônomo

Recentemente foi instituído, no Estado do Rio de Janeiro, a data de 2 de dezembro como o Dia do Astrônomo.[15] A data coincide com o aniversário do imperador Dom Pedro II, que era um conhecido incentivador da Astronomia.

Referências

  1. ↑ a b c d e f g h i j k l m n A. N. Cox, editor. Allen's Astrophysical Quantities. New York: Springer-Verlag, 2000.
  2. ↑ a b F. H. Shu. The Physical Universe. Mill Valley, California: University Science Books, 1982.
  3.  Staff. "Why infrared astronomy is a hot topic", ESA, 2003-09-11. Página visitada em 2008-08-11.
  4.  "Infrared Spectroscopy - An Overview", NASA/IPAC. Página visitada em 2008-08-11.
  5. ↑ a b P. Moore. Philip's Atlas of the Universe. Great Britain: George Philis Limited, 1997.
  6.  Penston, Margaret J. (2002-08-14). The electromagnetic spectrum. Particle Physics and Astronomy Research Council. Página visitada em 2006-08-17.
  7.  G. A. Tammann, F. K. Thielemann, D. Trautmann (2003). Opening new windows in observing the Universe. Europhysics News. Página visitada em 2006-08-22.
  8.  Calvert, James B. (2003-03-28). Celestial Mechanics. University of Denver. Página visitada em 2006-08-21.
  9.  Hall of Precision Astrometry. University of Virginia Department of Astronomy. Página visitada em 2006-08-10.
  10.  Wolszczan, A.; Frail, D. A. (1992). "A planetary system around the millisecond pulsar PSR1257+12". Nature 355: 145 – 147. DOI:10.1038/355145a0.
  11. ↑ a b Johansson, Sverker (2003-07-27). The Solar FAQ. Talk.Origins Archive. Página visitada em 2006-08-11. 
    1.  Lerner, K. Lee; Lerner, Brenda Wilmoth. (2006). Environmental issues : essential primary sources.". Thomson Gale. Página visitada em 2006-09-11.
    2.  Pogge, Richard W. (1997). The Once & Future Sun (lecture notes). New Vistas in Astronomy. Página visitada em 2010-02-03.
    3.  Stern, D. P.; Peredo, M. (2004-09-28). The Exploration of the Earth's Magnetosphere. NASA. Página visitada em 2006-08-22.
    4.  Título ainda não informado (favor adicionar).Lei Ordinária do Estado do Rio de Janeiro Nº 4.835 de 30 de agosto de 2006

Ver também

[editar]Ligações externas

Outros projetos Wikimedia também contêm material sobre este tema:
Wikilivros Livros e manuais no Wikilivros
Wikiquote Citações no Wikiquote
Commons Categoria no Commons
Wikinotícias Notícias no Wikinotícias